Neu entdecktes Enzym zersetzt PET-Kunststoff in Rekordzeit

2022-10-26 14:42:14 By : Mr. yong wu

Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.

Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.

1 / 3 Dr. Christian Sonnendecker und sein Team entdeckten ein Enzym, das PET-Kunststoff in Rekordgeschwindigkeit abbaut.

ersuchsaufbau zum Zersetzen einer PET-Verpackung

Von einer Obstschale aus PET (links) blieben nach dem Versuch lediglich Farbstoff und Reste von Schnittkanten zurück.

Plastikflaschen, Obstschalen, Folien: Diese leichten Verpackungen aus PET-Kunststoff werden zum Problem, wenn sie nicht recycelt werden. Wissenschaftler:innen von der Universität Leipzig haben nun ein hocheffizientes Enzym entdeckt, das PET in Rekordzeit abbaut. Mit dem Enzym PHL7, das die Forscher auf einem Leipziger Komposthaufen fanden, könnte biologisches PET-Recycling deutlich schneller als bislang angenommen möglich werden. Die Ergebnisse wurden jetzt in dem wissenschaftlichen Journal ChemSusChem veröffentlicht und als Titelthema ausgewählt.

Enzyme werden in der Natur zum Beispiel von Bakterien genutzt, um Pflanzenteile zu zersetzen. Dass einige Enzyme, sogenannte polyesterspaltende Hydrolasen, auch PET abbauen können, ist schon länger bekannt. Als ein besonders effektiver „Plastikzersetzer“ gilt beispielsweise das Enzym LCC, das 2012 in Japan entdeckt wurde. Nach bislang unbekannten Vertretern dieser biologischen Helfer sucht das Team um den Nachwuchswissenschaftler Dr. Christian Sonnendecker von der Universität Leipzig im Rahmen der EU-geförderten Drittmittelprojekte MIPLACE und ENZYCLE. Auf dem Leipziger Südfriedhof wurden sie fündig: Die Forscher:innen hatten dort gezielt Proben von Laubkompost genommen und fanden in einer Probe den Bauplan eines Enzyms, das im Labor in Rekordgeschwindigkeit PET zersetzte.

Die Forscher:innen vom Institut für Analytische Chemie hatten sieben verschiedene Enzyme gefunden und untersucht. Der siebte Kandidat mit dem Titel PHL7 erreichte im Labor deutlich überdurchschnittliche Ergebnisse: In den Versuchen gaben die Forschenden PET in Behälter mit einer wässrigen Lösung, die entweder PHL7 oder LCC, also den bisherigen Spitzenreiter bei der PET-Zersetzung, enthielt. Dann maßen sie die Menge an Plastik, die in einer bestimmten Zeitspanne abgebaut wurde, und verglichen die Werte miteinander. 

Das Ergebnis: Innerhalb von 16 Stunden zersetzte PHL7 das PET zu 90 Prozent, in der gleichen Zeit schaffte LCC einen Abbau von gerade einmal 45 Prozent. „Unser Enzym ist also doppelt so aktiv wie der Gold-Standard unter den polyesterspaltenden Hydrolasen“, erklärt Sonnendecker. Eine Kunststoffschale, in der im Supermarkt zum Beispiel Weintrauben verkauft werden, ließ sich mit PHL7 in weniger als 24 Stunden zersetzen. Die Forscher fanden heraus, dass ein einziger Baustein des Enzyms für die überdurchschnittlich hohe Aktivität verantwortlich ist: An der Stelle, wo andere bereits bekannte polyesterspaltende Hydrolasen einen Phenylalanin-Rest enthalten, trägt PHL7 ein Leucin.

Biologisches PET-Recycling weist einige Vorteile im Vergleich zu herkömmlichen Recyclingmethoden auf. Diese setzen vor allem auf thermische Verfahren, bei denen der Plastikmüll bei hohen Temperaturen eingeschmolzen wird. Dieser Prozess kostet viel Energie und die Qualität des Kunststoffs sinkt mit jedem Recyclingzyklus. Enzyme hingegen benötigen für ihre Arbeit lediglich eine wässrige Umgebung und eine Temperatur von 65 bis 70 Grad Celsius. Ein weiterer Pluspunkt: Sie zersetzen das PET in seine Bestandteile Terephthalsäure und Ethylenglycol, aus denen sich im Anschluss wieder neues PET herstellen lässt – ein geschlossener Kreislauf entsteht. Bislang wird biologisches PET-Recycling jedoch nur von einer Pilot-Anlage in Frankreich erprobt. 

„Das in Leipzig entdeckte Enzym kann einen wichtigen Beitrag bei der Etablierung von alternativen energiesparenden Plastikrecyclingverfahren leisten,“ sagt Prof. Dr. Wolfgang Zimmermann, der den Forschungsbereich zu enzymbasierten Technologien an der Universität Leipzig maßgeblich aufgebaut hat. „Aufgrund der enormen Probleme, die durch die weltweite Belastung der Umwelt mit Plastikabfällen entstanden sind, gewinnen umweltfreundliche Verfahren zur Wiederverwendung von Plastik in einer nachhaltigen Kreislaufwirtschaft immer mehr an Bedeutung. Der jetzt in Leipzig entwickelte Biokatalysator hat sich als hochwirksam bei der schnellen Zersetzung von gebrauchten PET-Lebensmittelverpackungen gezeigt und eignet sich für eine Anwendung in einem umweltfreundlichen Recyclingverfahren, bei dem aus den Abbauprodukten wieder neues Plastik hergestellt werden kann.“  

Die Forscher:innen aus Leipzig hoffen, dass das neu entdeckte Enzym PHL7 das biologische Recycling auch in der Praxis weiter voranbringen wird und suchen dafür nach Industriepartnern. Sie sind überzeugt, dass durch die höhere Geschwindigkeit die Kosten für das Recycling deutlich reduziert werden können. In den kommenden zwei bis drei Jahren soll ein Prototyp entstehen, der es erlaubt, die ökonomischen Vorteile ihres schnellen biologischen Recyclingverfahrens genauer zu beziffern.

Die Wissenschaftler:innen am Institut für Analytische Chemie im Arbeitskreis von Prof. Dr. Jörg Matysik wollen außerdem die Struktur und die Funktionsweise der Enzyme mittels NMR-Spektroskopie aufklären. Darüber hinaus arbeiten sie an einer neuen Vorbehandlungsmethode, die ein Problem des biologischen Recyclings lösen soll: Die PET-Zersetzung durch Enzyme funktioniert bislang nur für sogenanntes amorphes PET, das zum Beispiel für Obstverpackungen verwendet wird, nicht aber für Plastikflaschen, die aus sogenanntem gestrecktem PET bestehen.

Derzeit sind Sie nicht in my.chemie.de eingeloggt. Ihre Änderungen werden zwar gespeichert können jedoch jederzeit verloren gehen.

Meine Notiz: Notiz hinzufügen / bearbeiten

meine Merkliste Abbrechen Notiz speichern

„Faule“ und „fleißige“ Zellen in der Biokatalyse identifizieren

Die Umwandlung von chemischen Verbindungen durch lebende Zellen – sogenannte Ganzzellbiokatalysatoren – ist ein schon länger bekannter Prozess, der zu einer Fülle an interessanten Erzeugnissen geführt hat. Dies wird unter anderem bei traditionellen Prozessen wie dem Brotbacken oder Bierbrau ... mehr

Stabil, effizient, umweltschonend: Forschende entwickeln vielversprechenden Wärmespeicher

Ein neues Material zur Wärmespeicherung könnte dabei helfen, Häuser energetisch deutlich zu verbessern. Entwickelt wurde es von Forschenden der Martin-Luther-Universität Halle-Wittenberg (MLU) und der Universität Leipzig. Mit ihm lässt sich überschüssige Wärme speichern und bei Bedarf wiede ... mehr

Für das Labor auf dem Chip: Neues Thermofluidik-Verfahren entwickelt

Forschern der Universität Leipzig ist es gelungen, winzige Flüssigkeitsmengen nach Belieben zu bewegen, indem sie Wasser über einem Metallfilm mit einem Laser ferngesteuert erhitzen. Die derart erzeugten Strömungen können genutzt werden, um winzige Objekte zu manipulieren und sogar einzufan ... mehr

"Fingerabdruck" diffuser Protonen entschlüsselt

Der Grotthuß-Mechanismus, benannt nach dem Leipziger Naturwissenschaftler Freiherr Theodor von Grotthuß (1785-1822), erklärt qualitativ den Transport von elektrischen Ladungen in wässrigen Lösungen. Dieser spielt in alltäglichen biochemischen Prozessen, zum Beispiel der Signalübertragung in ... mehr

Zellkultur in der dritten Dimension

Aussagen zur toxikologischen Wirkung von Chemikalien und pharmazeutischen Erzeugnissen müssen vor Markteinführung erfasst werden. Dabei spielten bis heute Tierversuche eine wichtige Rolle, diese gilt es jedoch zu vermeiden und die Tests stattdessen in organoiden Zellkultursystemen mit hoher ... mehr

Peggy Stock, Jahrgang 1976, studierte an der Martin-Luther-Universität Halle-Wittenberg Biologie und promovierte im Jahr 2005. Seit ihrer Rückkehr von einem Forschungsaufenthalt an der University of Pittsburgh (USA) arbeitet sie in der Arbeitsgruppe Angewandte Molekulare Hepatologie um Prof ... mehr

Jg. 1984, absolvierte ihren Bachelor of Science in Molekularer Biotechnologie an der Technischen Univer­sität Dresden, bevor sie 2009 im internationalen Studiengang „Molecular Medicine“ der Charité Berlin mit dem Master of Science graduierte. Gefördert durch ein Charité-Stipendium erfolgte ... mehr

Lesen Sie alles Wissenswerte über unser Fachportal chemie.de.

Erfahren Sie mehr über das Unternehmen LUMITOS und unser Team.

Erfahren Sie, wie LUMITOS Sie beim Online-Marketing unterstützt.

© 1997-2022 LUMITOS AG, All rights reserved